What do sensors tell us about crops?

Crop sensors provide farmers with rapid, objective, quantitative and precise (repeatable) measurements difficult or impossible to obtain by other means. Those data, usually acquired during the 1st stage of the PA cycle (see the first Precision Ag Corner in our November 2016 edition), need to be turned into information (2nd stage) to help them make optimal management decisions (3rd stage).

As our readers now well know, New Ag International has partnered with the Research Group on AgroICT & Precision Agriculture (GRAP) of the University of Lleida-Agrotecnio Center in Catalonia, Spain. In every issue of the magazine, we put together an editorial whose ambition is to help the various stakeholders bridge the gap between datanomics and commercial farming! In the previous Precision Ag Corner in September, we covered general aspects related to sensing. In this issue we review some of the most relevant sensing techniques, either remote or proximal, used to gather information on the crop.

In the September Precision Ag Corner (PA) we described the basis of sensing techniques and reviewed some soil and yield sensors. However, one of the key aspects in PA is the use of sensors to provide farmers and advisors with reliable data of their crops. Which are the most used sensors in PA either boarded in remote or in proximal platforms? Although it is usually accepted that PA was yield maps (obtained by proximal sensing), it is also true that the implementation of PA has been supported by the availability of remote sensing data.

REMOTE SENSING IN PRECISION AG: MAINLY USED TO CALCULATE VEGETATION INDICES

No-one escapes that Remote Sensing is the acquisition of information about objects, land cover or phenomena without physical contact with them. Although these data acquisition can also be done with some proximal sensors (e.g. photographic cameras), the term Remote Sensing generally refers to the use of sensors boarded on satellites, aircrafts or Unmanned Aerial Vehicles (UAV, drones). Since the beginnings of digital multispectral remote sensing, back in 1972 with the launch of Landsat 1 (NASA), satellite images have been used in agricultural monitoring, crop status mapping, calculation of water needs and crop classification, among other. However, it was not until 2000 that the first publicly high-resolution images (1-4m) were available with the launch of IKONOS. Afterwards, other satellites able to acquire even higher-resolution imagery came, enabling full applications in precision agriculture (e.g. Quickbird-2, WorldView-2, 3, etc.). Today, technological advances have permitted the miniaturization of this type of sensor, allowing us to acquire images of up to 2-3cm/pixel (when boarded on UAV), which expands the range of possible applications in agriculture and other disciplines.

In precision agriculture, remote sensing is mainly used in detailed crop monitoring through the calculation of the so called vegetation indices (VI). The most known VI is the Normalized Difference Vegetation Index (NDVI), which is a simple calculation using the vegetation reflectance on the red (R) and near infrared (NIR) bands of the electromagnetic spectrum: NDVI = (NIR-R) / (NIR+R). Healthy plants absorb red light to carry out the photosynthetic process and mainly reflect NIR light. So the healthier the plant, the higher red light absorption (less reflectance), the higher NIR reflectance and, then, the higher NDVI. Alternatively, a plant affected by a disease, a pest or hydric stress tends to reflect more red light and less NIR light, decreasing the NDVI value. Since today there are large number of platforms and sensors, there are hundreds of possible combinations of bands to compute VIs. Then, scientists have to establish relationships between these indices and physiological characteristics of plants.

Vegetation indices from remote sensing images can be used for PA purposes in many ways and in different moments of the crop cycle. Before the beginning of the season, and based on data from previous campaigns, VIs can be used to define site-specific management units for operations such as differential seeding (in grain crops), differential base fertilization, differential amendments with organic matter (e.g. compost) and differential irrigation, among others. For such purposes it could be better not to base the decisions only on the VI of a specific date but on the integration of other possible previous images showing the variability of vegetation vigour in the target field(s). This will give a more realistic vision of the productive potential of the different zones of the field (Figure 1). In addition, and preferably, apparent electrical conductivity maps and previous yield maps (if available) should also be used in combination with VIs to define the different site-specific management units. However, many times these data will be not available and farmers will have to rely only on multispectral aerial images and VIs. What if we do not have a series of images to estimate the productive potential from VIs? In many cases farmers will only be able to afford one or two images to map the crop vigour. In those cases the best is to acquire images just before flowering (e.g. grain crops) (Figure 1), or at the beginning of maturation (e.g. grapevine). In other stages, crops (maybe) have not reached their maximum vegetative expression, or it is already declining. During flowering (e.g. maize), the colour of the flowers may interfere with the greenness of the vegetation and could alter the spectral response in the bands used to compute the VIs, so images between the moment when the...
crop totally covers the soil and flowering will be preferred. During the season, vegetation indices mainly serve to monitor the crop status and to decide about the management actions to carry out. These actions can be diverse. Following the crop cycle (e.g. in grain crops), one of the first actions to perform is the application of side dressing, mainly nitrogen (N). Aerial images are then of great interest to direct differential fertilization, since N is one of the main costs in crop production. The moment of image acquisition for this purpose is important (see also Figure 1). For example, in maize the right moment to acquire images to decide about differential side dressing is V6 (six leaves). In that moment the crop almost covers the ground and it is still possible to enter in the field to apply the fertilizer. After side dressing, crop monitoring is also important, particular-

![Figure 1. Vegetation index (NDVI) at different dates of a winter barley field (15 ha) mapped using Sentinel-2A images. The NDVI Sum indicates the sum of the VIs along the spring and the Yield image corresponds with the final yield mapped from data acquired with a yield monitor. The NDVI Sum represents the relative productive potential of each region of the field. The spatial variability of the yield match better with the stage of the crop before flowering (March VIs) than with VIs of later stages, when the NDVI is saturated because of the high absorbance of red light.](image-url)

**MORE BUDS, FRUIT, & MONEY! WITH BREAKOUT®**

Huma Gro® BREAKOUT® complexed with Micro Carbon Technology® increases bud initiation, flowering, and fruit-set. Get more uniform crops and increased yields.

- Provides energy to push “bud-break” uniformly
- Accelerates the emergence of fruiting buds
- Provides energy needed to promote uniform flowering, increasing the number of flowers and improving fruit-set
- Use at seeding or when transplanting to maximize new root growth

LEARN MORE AT: HumaGro.com/NA1117
ly in irrigated crops. It is not only to
detect hydraulic stress and decide the
moment of irrigation, but VIs can
also be use very useful to detect irriga-
tion problems such as failure of
sprinklers, different water pressure
along pivot arms, failure of
spray nozzles, etc. Complementary,
monitoring through VIs can give
feedback to the farmer on how the
crop is performing and on the con-
sequences of management opera-

Another important issue for farm-
ers is yield prediction prior to the
harvest. Some VIs are well correlat-
ed with yield some weeks prior to
harvesting, without the inconveni-
ences of yield monitors, or without
the necessity to wait till the end of
the campaign to have the yield
map, either to organize logistics or
to estimate the expected income.
In grapevines, different studies
have demonstrated that VIs derived
from multispectral images acquired
±15 days of the starting of grape
maturity (about one month or more
prior to the harvest) are useful to
predict grape yield (see the
Precise Ag Corner of June 2017,
pg. 13). This prediction can improve
if other vine load variables sampled
during the campaign in reference
vines (e.g. number of branches,
number of bunches) are also taken
into account, in addition to VIs.
Some research works have tried to
go even further, trying to demon-
strate if not only the grape yield is
predictable from VIs but also the
quality of the grapes and the qual-
ity of the final wine coming from
specific selected blocks on the
basis of VIs. In this respect, the
studies have shown that crop vari-
ables related to the vegetative
development have higher correla-
tions with VIs, but not all grape
quality variables are well correlat-
ed. For example, the probable alco-
holic degree or total acidity of the
grape juice do not usually present a
clear differentiation in VI zones, or
sometimes depending on the vari-
ety. Other properties such as total
phenolics, colour, anthocyanins or
tannins, present better perform-
ance in relation to VI zones. In
those cases the relationships are
inverse, which indicates that low
vigour zones are the ones present-
ing the highest contents of pheno-
latics and the highest values of
absorbance units for colour, antho-
cyanins and tannins in the grape
juice; and always the differentia-
tion of those properties are in 2-VI
zones than in 3-VI zones. Although
VIs can be very useful to monitor
spatial variability, before making
decisions about differential man-
agement it will be important to
understand whether there are
sufficient and structured spatial
variations of vigour. In this way
the farmer/technician will see
whether site-specific management
areas within the field are large
enough to justify investing in the
required equipment and devices
for differential management.
As one can see, remote sensing has
played, and is playing, an impor-
tant role in PA and it still has many
things to say. Coinciding with the
UAV boom, there is also a new rev-
olution in the development of new
satellites and sensors. The launch
of new satellite missions with
improved payloads and the
appearance of nanosatellites,
increasing both the spatial and
temporal resolutions of image
series, are opening new possibili-
ties. For example, there are compa-
nies (e.g. Planet) that intend to
provide daily coverage of the world
with a detail of 3-4 m/pixel. For
that there will be a constellation of
120 satellites able to capture
150,000,000 km²/day in the RGB
and NIR spectral bands. In addition
to these private initiatives there are
contributions of public administra-
Interview with to Lionel Breton, CEO, Force-A

What are the trends in crop sensing and what are the sensors Force-A is offering? Basically, it could be said that three key elements are requested: yield improvement, disease prevention and input management. FORCE-A with its DUALEX and MULTIPLEX tools, offers a possibility to “reach” the signals related to these topics.

Beyond sensors you also offer services related to decision making for management operations. What are the reasons behind such an enlarged portfolio? It is obvious when you are a sensor manufacturer to move forward to decision making tools. If we look at the global wine industry, there is a trend worldwide towards better quality. Precision agriculture is a clear answer to “quality improvement”.

A focus group of the European Commission pointed out that Precision Agriculture (PA) usually means high initial costs and long return-on-investment periods. Are PA sensors “too expensive”? Are there independent trustworthy cost-benefit studies analysing the actual payback of PA implementation?

As for all new technologies, there are different phases. The phase 1, we can call it the “native” one, is obviously expensive in terms of development, research and application. But when technology proves to answer a real market need, let’s say in phase 2, cost saving through extensive usage of the technology is arising and brings as well profit to the user. We have at FORCE-A, the clear evidence of this process.

Are your fluorescence tools calibrated for early detection of nutrient deficiencies, in particular micronutrients deficiencies that are very often hidden in the early stages? In the nutrient management applications, our tools are dedicated to Nitrogen management, where several publications have shown our capability to assess early stage deficiencies (eg Multiplex on Maize).

“In the nutrient management applications, our tools are dedicated to Nitrogen management, where we have a documented capability to assess early stage deficiencies, e.g. with Multiplex on Maize”

Over 20% of the wheat acreage in France access decision support services for third Nitrogen application mostly from satellite images and drones. How does Force A solutions differentiate from those integrated services with ready to use variable rate application maps? One of the key features of FORCE-A products is proximity non-destructive technology. This is very well understood by our clients and we developed for them proprietary indices such as NBI, the Nitrogen Balance Index.

You have set up a number of partnerships around the world, mainly with research institutions. Very few indeed with the inputs industry. However one is noticeable, it is the partnership with French biostimulants company Goemar. What is the nature of the partnership? We have set up partnerships with both universities/R&D researchers and industrial partners; in this second case, especially with the world of vine and wine. We are operating on a worldwide basis on research with exclusive distributor arrangements from USA to China, from Brazil to India and we have a lot of partnerships with grape growers in key wine countries in order to deliver an in depth personalized recommendation; no two wines are equivalent!

What are the principal challenges in crop sensing for PA in the coming years? How is Force-A positioned to address them? Where do you see the most important market growth for your products and services? As I was mentioning before, we have three key objectives: quantity (yield), perenity of the crop (detection of disease) and safety (input management). We at FORCE-A get ready to answer challenges we could summarize as feeding an increasing number of people, protect raw material supply and respect the environment.
tions, as for example the Sentinel-2 mission of the European Commission. This mission provides free imagery with a revisit time of about 5 days and with a 10 / 20 m pixel resolution (visit https://sentinel.esa.int/web/sentinel/misions/sentinel-2 for details). Although 10 m resolution can be a limit for PA purposes in small fields, it can be useful in applications in extensive crops or large horticultural fields. Despite these advances, aircrafts and UAVs go on in taking their part of the cake. Decreasing the altitude of sensors reduces the need for atmospheric corrections and increases the spatial resolution of images (Figure 2). The latter is very important when working with row crops such as vineyards or fruit trees. This allows for the removal of ground pixels to only work with pure crop data. Additionally, such high spatial resolution imagery could also be used to detect weed patches within fields and derive prescription maps to control them in a variable rate site-specific approach.

In conclusion, today farmers and technicians have a large number of possibilities to monitor their crops and to decide about differential management based on remote sensing imagery. New applications are expected to come in the near future and no platform or sensor should be discarded.

PROXIMAL SENSING: HELPING TO ASSESS THE VIGOR OF THE CROP

Proximal crop sensing has evolved rapidly in the last years and many sensors and sensing techniques are either commercially available or at their last developing stages. Among the available techniques, there are applications based on machine vision, radiometry, ultrasound, LiDAR and many other sensing principles. Such is the case of ground-based radiometric sensors to estimate crop vigour and to relate it to the N content or the N needs. Figure 3 shows several
commercial sensors used for on-the-go vigour estimation for variable rate N application in grain crops.

In horticulture, crops are usually trained in 3D shapes. That makes it very important not only to sense them from above with aerial remote sensing solutions but also along their lateral sides. Additionally, measuring the fruits for geometric and quality characteristics in fruit crops may provide the farmers with important information on their final product.

Machine vision, for instance, is used to detect and count fruits in orchard for crop load estimation. Radiometric sensors can be used for vigour and disease detection in fruit orchards. The use of thermal radiometric sensors to detect water status and derived irrigation needs is also of interest.

Other types of sensors and sensing techniques are still under development. Such is the case of LiDAR (light detection and ranging) sensors to get information on the canopy of arable crop as well as of tree crops. This kind of sensor is being used airborne in forestry for many years in what is known as airborne laser scanners (ALS). However, cost reductions and technology improvements have turned them into a good ground-based alternative for agriculture, the terrestrial laser scanners (TLS), when stationary, or the mobile terrestrial laser scanners (MTLS).

Putting it simple, LiDAR sensors use laser light to detect objects directing the laser beam to different angles around the sensor. The sensor output is usually a polar array providing with ranges and angles for each of the measurements. When used together with a GNSS receiver, the position of the mobile antenna is transferred to the sensor and to each of the measurements resulting in a 3D point cloud of the scanned scene (Fig. 4, left). When scanning an orchard with a MTLS, information on tree heights, widths and canopy volume can be extracted and presented to the farmer as a spatial variability map of each of the parameters (Fig. 4, right).

Additionally, information on the leaf area index, canopy porosity and other geometrical and structural properties can also be derived. Moreover, scanning the fields or the orchards several times during the season provide with the temporal evolution of the crop. For instance, when subtracting canopy volume maps of different dates, the result is a growth map between the two dates.

Like other sensing techniques, the information provided is not a diagnosis of what is happening in the field but an overall picture of its variability. Then it is the turn of the farmer or the advisor to figure out what is going on in the field and to decide the best management strategy. These kind of systems and techniques are already in use in the industry but they are still under development in agriculture.

**FLUORESCENCE SENSING: THE LIGHT THAT ‘EXCITES’ PLANTS**

Apart from visible and infrared reflectance, chlorophyll concentration within leaves or the functioning of photosynthesis as a global process can be sensed by fluorescent light. Now, the light is not simply reflected but emitted at a wavelength greater than the initially absorbed which excites the plants to fluoresce. Thus, fluorescence in the blue to green region extends wavelengths from about 400 to 600 nm. Another common range for plant fluorescence is the red (650 nm) to far-red region (770 nm). As chlorophyll and photosynthesis are normally involved in this flux of radiation (from excitation to emitted fluorescence), signals detected by fluorescence sensors can be interpreted in terms of chlorophyll content and photosynthetic activity. Specifically, less photo-chemically active leaves (with lower chlorophyll content) increase fluorescence compared to healthy leaves with greater light absorbance. The reasoning is simple. Plants poorly equipped with...
Remote sensing: Technically, RS is the acquisition of information about objects or phenomena without physical contact. In Precision Agriculture, it generally refers to the use of satellite-, aircraft- or unmanned aerial vehicles-based sensing technologies to detect, analyse and classify vegetation based on reflected and/or emitted electromagnetic radiation from passive or active energy sources. Remote sensing is used in numerous fields, including agriculture, geography, land surveying hydrology, ecology, oceanography, geology, among others.

Sentinel missions: The European Space Agency (ESA) is deploying a new family of missions for Earth observation and monitoring called Sentinels within the Copernicus programme. Each Sentinel mission is based on a constellation of two satellites to fulfil revisit and coverage requirements, providing robust datasets for Copernicus Services. These missions carry a range of technologies, such as radar and multi-spectral imaging instruments for land, ocean and atmospheric monitoring. One of these missions is Sentinel-2, which is a multispectral high-resolution (10 or 20 m) imaging mission for land monitoring to provide, for example, imagery of vegetation, soil and water cover, inland waterways and coastal areas.

Proximal sensing: Term used as the opposite of Remote Sensing. But how proximal is Proximal sensing? To avoid establishing a threshold, in Precision Ag it is commonly accepted that proximal sensing techniques are those using sensors for ground-based measurements. Proximal sensing is very useful to get crop data with a higher detail than with RS or to get data from hidden areas, impossible to monitor using RS.

On-the-go sensing: Sensing technique consisting of one or several sensors providing readings in a nearly-continuous way so that measurements can be acquired either to be stored and subsequently processed or to be processed in real time. Once connected, some sensors are designed to provide readings at a given frequency so that the acquisition system only needs to capture the data. Some other sensors are designed to respond after a trigger signal. Such a signal has to be provided by the acquisition system, forcing it to include a microprocessor.